

Capability: Optical devices and systems using domain engineered nonlinear optical materials

- Hydrothermal and flux grown KTP (potassium titanyl phosphate),
- Doped and non-doped SLT (stoichiometric lithium tantalate),
- Mg doped (5%) LN (lithium niobate)

Versatile poling technique and accruing knowledge of substrate performance variations provide a foundation for advancing non-electronic implementations of MQCO.

Waveguide-based SPDC source

Research interest:

- Development of on-demand single photon sources.
- Compact UV sources for ion/atom trapping
- Design and fabrication (exchange and ridge) of low loss (coupling and transmission) NLO waveguides.
- Integrated multi-element waveguide structures.
- Low-loss, high speed switching.

Multi-Element Waveguide Structures

SHG + Down Conversion

SHG + Phase Modulator

Beam Deflection Technology

AdvR is interested in pursuing teaming opportunities with both academic and industrial institutions involved in experimental implementations of MQCO using on-demand photon sources, uv sources, low-loss switches, or other bulk or waveguide nonlinear devices.

SHG + SFG -> uv generation

Arrayed Waveguide Devices

Contact
Dr. Philip Battle
VP Technology
battle@advr-inc.com
www.advr-inc.com
(406) 522-0388